

LNG: COMING TO A SHORE NEAR YOU?

The Dominion Integrated Enterprise Serves the World's 3rd Largest Economy

Why LNG?

World Natural Gas Reserves - Jan 1, 2000

Source: International Energy Annual 1999 - EIA

What is LNG?

LNG is natural gas in its liquid form

- * LNG is the liquid form of the same natural gas 60 million U.S. consumers use daily to heat and cool their homes; that industry uses; and that is used for electric power generation
- * LNG is not new -- it has been safely and securely transported and used for over 40 years
- * Natural gas is converted to LNG by cooling to -260° F
- * LNG is 1/600th the volume of gas, allowing for more efficient and economic transportation

LNG Characteristics

- * Odorless, non-toxic and non-corrosive
- * Less dense than water -- evaporates if spilled
- * LNG vapors are more difficult to ignite than other common fuels
- * LNG is not under pressure for shipping and storage
- * LNG spills would not pollute land or water

LNG -- Bringing it to market

- * Natural gas is produced in countries that have vast supplies of gas with little demand
- * The gas is condensed to a liquid and transported overseas by ship
- * When it reaches the receiving terminal, LNG is re-gasified and is distributed via pipeline as ordinary natural gas

Upon reaching the receiving terminal, LNG is turned back into a gas and sent out via pipelines as ordinary natural gas.

LNG -- long, safe history in U.S

There are over 100 LNG peak-shaving, production, transport and storage facilities across the country. Only five of those are receiving terminals

Natural Gas -- key to U.S. energy mix

Average Annual U.S. Energy Use

- 90 percent of recently constructed power plants are fueled by natural gas
- Over the past decade, consumption of natural gas grew 25 percent faster than overall energy use

Source: EIA - Annual Energy Outlook 2005

Natural gas -- meeting the demand challenge U.S. 1970 - 2025 (billion cubic feet / day)

^{*} All domestic gas sources <u>plus</u> additional LNG imports are essential to meet America's growing natural gas needs

* 1 BCF = enough to supply 4.3 million homes each day

LNG -- diverse global supplies

New Global LNG Export Capacity Proposed or Under Construction

* LNG supply growing

* Geographically diverse supply sources

* Long-term LNG supply outlook robust

Source: EIA

Growing U.S. LNG imports

Net U.S. Imports of Liquefied Natural Gas, 1970-2025

(billion cubic feet per day)

12

Source: EIA - Annual Energy Outlook 2005

Existing U.S. receiving terminals

More receiving terminals needed to meet growing gas demand

Total U.S. LNG receiving **capacity (2005):** 2.76 Bcf/d

Lake Charles, Louisiana

Expanded Current

Sendout (Bcf/d) 0.630 1.800 9.000

Storage (Bcf) 6.300

Everett, Massachusetts

Current Expanded

Sendout (Bcf/d) 0.535 0.715 Storage (Bcf) 3.300 3.500

Cove Point, Maryland

Current **Expanded** 0.750 1.500

Sendout (Bcf/d) Storage (Bcf) 6.800 7.800

Elba Island, Georgia

Current **Expanded**

0.800 Sendout (Bcf/d) 0.445 Storage (Bcf) 4.000 7.300

WC 603, Offshore, La.

Current

Sendout (Bcf/d) 0.400

No storage

© 2003 Dominion

Source: DOE

Cove Point LNG Terminal

6

Fernando Tapias

9

Cove Point LNG

16

North America LNG Terminal Status -- May 2005

** These projects have been approved by the Mexican and Canadian authorities

Siting LNG terminals

Requirements

LNG receiving terminals need:

- Federal, state and local support
- Adequate market
- Deepwater accessibility & harbor facility
- Existing pipeline network

Issues

Public perception

Safety & security

Investment costs

Long lead times (5-7 years)

Permitting

 NEPA, CWA, CAA, CZMA, dredging

LNG project permitting

Rigorous 12-18 month process

- FERC lead for onshore terminals
- USCG lead for offshore terminals

NEPA Environmental Impact Statement drives project

- Collaboration with state and federal agencies
- Multiple opportunities for public input and community meetings

13 resource reports required for terminal; 12 more for associated pipelines

- Engineering design
- Impacts on fish, wildlife, vegetation
- Air and water quality and water usage
- Terminal and ship safety and security
- Impact on cultural resources; socioeconomic effects

State Agencies Federal Agencies Public Utility Commission, FERC, Coast Guard, MMS, etc. General Land Office. **Environmental Agencies.** Historical Agencies, etc. USCG RRC CEQ MMS Historical COE commission CCC **FWS FERC** NOAA Parks & Wildlife Wheel shows 18 primary agencies **EPA GLO** for a terminal DWF Eco. Dev. project in Texas Cultural Development with pipeline **DNR** DEQ extending into Louisiana

EPACT of 2005

- * Clarifies FERC Exclusive Siting Authority
- * Requires Pre-filing Process
- * FERC as Lead Agency Set Schedule
- * FERC to Hold Three LNG Forums
- * FERC MOU With Secretary of Defense
- * New State Role in Safety Inspections

For more information contact:

Bruce McKay

Dominion

202.585.4207

Bruce_McKay@Dom.com

